9 research outputs found

    Hierarchical Patterns of Global Human Y-Chromosome Diversity

    Get PDF
    We examined 43 biallelic polymorphisms on the nonrecombining portion of the Y chromosome (NRY) in 50 human populations encompassing a total of 2,858 males to study the geographic structure of Y-chromosome variation. Patterns of NRY diversity varied according to geographic region and method/level of comparison. For example, populations from Central Asia had the highest levels of heterozygosity, while African populations exhibited a higher level of mean pairwise differences among haplotypes. At the global level, 36% of the total variance of NRY haplotypes was attributable to differences among populations (i.e., Phi(ST) = 0.36). When a series of AMOVA analyses was performed on different groupings of the 50 populations, high levels of among-groups variance (Phi(CT)) were found between Africans, Native Americans, and a single group containing all 36 remaining populations. The same three population groupings formed distinct clusters in multidimensional scaling plots. A nested cladistic analysis (NCA) demonstrated that both population structure processes (recurrent gene flow restricted by isolation by distance and long-distance dispersals) and population history events (contiguous range expansions and long-distance colonizations) were instrumental in explaining this tripartite division of global NRY diversity. As in our previous analyses of smaller NRY data sets, the NCA detected a global contiguous range expansion out of Africa at the level of the total cladogram. Our new results support a general scenario in which, after an early out-of-Africa range expansion, global-scale patterns of NRY variation were mainly influenced by migrations out of Asia. Two other notable findings of the NCA were (1) Europe as a "receiver" of intercontinental signals primarily from Asia, and (2) the large number of intracontinental signals within Africa. Our AMOVA analyses also supported the hypothesis that patrilocality effects are evident at local and regional scales, rather than at intercontinental and global levels. Finally, our results underscore the importance of subdivision of the human paternal gene pool and imply that caution should be exercised when using models and experimental strategies based on the assumption of panmixia

    Population Structure of the Pelješac Peninsula, Yugoslavia

    No full text
    We gathered serogenetic and parent-offspring migration data from 604 residents of 7 villages on the Pelješac peninsula in southern Yugoslavia. A variety of population genetics and multivariate statistics models and procedures give a concordant picture of the population structure of this region. Extensive migration is the dominant microevolutionary force patterning the variation seen today. Multiple population bottlenecks have also occurred over the past few centuries as a result of disease, famine, war, economic failure, and founder events, making it likely that genetic drift has been an important factor in the history of this population system

    New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree

    No full text
    Markers on the non-recombining portion of the human Y chromosome continue to have applications in many fields including evolutionary biology, forensics, medical genetics, and genealogical reconstruction. In 2002, the Y Chromosome Consortium published a single parsimony tree showing the relationships among 153 haplogroups based on 243 binary markers and devised a standardized nomenclature system to name lineages nested within this tree. Here we present an extensively revised Y chromosome tree containing 311 distinct haplogroups, including two new major haplogroups (S and T), and incorporating approximately 600 binary markers. We describe major changes in the topology of the parsimony tree and provide names for new and rearranged lineages within the tree following the rules presented by the Y Chromosome Consortium in 2002. Several changes in the tree topology have important implications for studies of human ancestry. We also present demography-independent age estimates for 11 of the major clades in the new Y chromosome tree

    Paternal Population History of East Asia: Sources, Patterns, and Microevolutionary Processes

    Get PDF
    Asia has served as a focal point for human migration during much of the Late Pleistocene and Holocene. Clarification of East Asia’s role as a source and/or transit point for human dispersals requires that this region’s own settlement history be understood. To this end, we examined variation at 52 polymorphic sites on the nonrecombining portion of the Y chromosome (NRY) in 1,383 unrelated males, representing 25 populations from southern East Asia (SEAS), northern East Asia (NEAS), and central Asia (CAS). The polymorphisms defined 45 global haplogroups, 28 of which were present in these three regions. Although heterozygosity levels were similar in all three regions, the average pairwise difference among haplogroups was noticeably smaller in SEAS. Multidimensional scaling analysis indicated a general separation of SEAS versus NEAS and CAS populations, and analysis of molecular variance produced very different values of Φ(ST) in NEAS and SEAS populations. In spatial autocorrelation analyses, the overall correlogram exhibited a clinal pattern; however, the NEAS populations showed evidence of both isolation by distance and ancient clines, whereas there was no evidence of structure in SEAS populations. Nested cladistic analysis demonstrated that population history events and ongoing demographic processes both contributed to the contrasting patterns of NRY variation in NEAS and SEAS. We conclude that the peopling of East Asia was more complex than earlier models had proposed—that is, a multilayered, multidirectional, and multidisciplinary framework is necessary. For instance, in addition to the previously recognized genetic and dental dispersal signals from SEAS to NEAS populations, CAS has made a significant contribution to the contemporary gene pool of NEAS, and the Sino-Tibetan expansion has left traces of a genetic trail from northern to southern China
    corecore